Non-Negative Multiple Matrix Factorization
نویسندگان
چکیده
Non-negative Matrix Factorization (NMF) is a traditional unsupervised machine learning technique for decomposing a matrix into a set of bases and coefficients under the non-negative constraint. NMF with sparse constraints is also known for extracting reasonable components from noisy data. However, NMF tends to give undesired results in the case of highly sparse data, because the information included in the data is insufficient to decompose. Our key idea is that we can ease this problem if complementary data are available that we could integrate into the estimation of the bases and coefficients. In this paper, we propose a novel matrix factorization method called Non-negative Multiple Matrix Factorization (NMMF), which utilizes complementary data as auxiliary matrices that share the row or column indices of the target matrix. The data sparseness is improved by decomposing the target and auxiliary matrices simultaneously, since auxiliary matrices provide information about the bases and coefficients. We formulate NMMF as a generalization of NMF, and then present a parameter estimation procedure derived from the multiplicative update rule. We examined NMMF in both synthetic and real data experiments. The effect of the auxiliary matrices appeared in the improved NMMF performance. We also confirmed that the bases that NMMF obtained from the real data were intuitive and reasonable thanks to the non-negative constraint.
منابع مشابه
Iterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition
Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...
متن کاملA new approach for building recommender system using non negative matrix factorization method
Nonnegative Matrix Factorization is a new approach to reduce data dimensions. In this method, by applying the nonnegativity of the matrix data, the matrix is decomposed into components that are more interrelated and divide the data into sections where the data in these sections have a specific relationship. In this paper, we use the nonnegative matrix factorization to decompose the user ratin...
متن کاملVoice-based Age and Gender Recognition using Training Generative Sparse Model
Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...
متن کاملMultiple Nonnegative-matrix Factorization of Dynamic Pet Images
We propose an extension of nonnegative matrix factorization (NMF) to multilayer network model for dynamic myocardial PET image analysis. NMF has been previously applied to the analysis and shown to successfully extract three cardiac components and time-activity curve from the image sequences. Here we apply triple nonnegative-matrix factorization to the dynamic PET images of dog and show details...
متن کاملPart of Speech Induction using Non-negative Matrix Factorization
Unsupervised part-of-speech induction involves the discovery of syntactic categories in a text, given no additional information other than the text itself. One requirement of an induction system is the ability to handle multiple categories for each word, in order to deal with word sense ambiguity. We construct an algorithm for unsupervised part-of-speech induction, treating the problem as one o...
متن کامل